Co-Silencing of PKM-2 and MDR-1 Sensitizes Multidrug Resistant Ovarian Cancer Cells to Paclitaxel in a Murine Model of Ovarian Cancer

Meghna Talekar1, Qijun Ouyang2, Michael Goldberg2 and Mansoor Amiji1 1Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 2Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA Email: ouyang.qij@husky.neu.edu

ABSTRACT

Purpose: The aim of our study was to evaluate the effectiveness of combination therapy with siMDR-1 and siPKM-2 in SKOV-3WT and SKOV-3TR human ovarian adenocarcinoma cell lines and xenograft models. Using hyaluronic acid (HA)-based self-assembling nanoparticles targeted for the epidermal growth factor receptor (EGFR) on the surface. We aimed to investigate whether co-silencing of PKM-2 and MDR-1 could enhance the efficacy of paclitaxel (PTX) against MDR ovarian cancer.

Experimental Methods: The nanoparticles with the siRNA were characterized for morphology, size, charge, encapsulation efficiency and transfection efficiency. In vivo studies included biodistribution, assessment, gene knockdown confirmation, therapeutic efficacy, and safety analysis.

Results: The self-assembling nanoparticles showed a spherical morphology in TEM with particles in size range of 106-125 nm and surface charge ranging from -125 to -328 mV. Fluorescence confocal microscopy studies showed higher permeability efficiency in EGFR targeted system. Down-regulation of MDR-1 gene expression (60-80%) was confirmed by transfection studies. A decrease in IC50 was detected from combination therapy compared with single siMDR-1 therapy using cytotoxic assay. In vivo knockdown studies showed the targeted nanoparticles provided down-regulation MDR-1 (65%) and PKM-2 (65-70%) in SKOV-3 tumor bearing mice. Combination therapy showed improved tumor growth inhibition (TGI) and tumor volume doubling (TVD) time for all treatment groups compared to PTX alone.

Conclusions: This study showed the encapsulation and delivery of siMDR-1 and siPKM-2 in HA-PEI based self-assembling nanoparticles improved the efficacy and cytotoxic effect of PTX in cancer cells. Plus, these agents can provide synergistic activity for cancer therapy.

REFERENCES

ACKNOWLEDGEMENTS

Co-Silencing of PKM-2 and MDR-1 Sensitizes Multidrug Resistant Ovarian Cancer Cells to Paclitaxel in a Murine Model of Ovarian Cancer

Meghna Talekar1, Qijun Ouyang2, Michael Goldberg2 and Mansoor Amiji1 1Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 2Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA Email: ouyang.qij@husky.neu.edu

ABSTRACT

Purpose: The aim of our study was to evaluate the effectiveness of combination therapy with siMDR-1 and siPKM-2 in SKOV-3WT and SKOV-3TR human ovarian adenocarcinoma cell lines and xenograft models. Using hyaluronic acid (HA)-based self-assembling nanoparticles targeted for the epidermal growth factor receptor (EGFR) on the surface. We aimed to investigate whether co-silencing of PKM-2 and MDR-1 could enhance the efficacy of paclitaxel (PTX) against MDR ovarian cancer.

Experimental Methods: The nanoparticles with the siRNA were characterized for morphology, size, charge, encapsulation efficiency and transfection efficiency. In vivo studies included biodistribution, assessment, gene knockdown confirmation, therapeutic efficacy, and safety analysis.

Results: The self-assembling nanoparticles showed a spherical morphology in TEM with particles in size range of 106-125 nm and surface charge ranging from -125 to -328 mV. Fluorescence confocal microscopy studies showed higher permeability efficiency in EGFR targeted system. Down-regulation of MDR-1 gene expression (60-80%) was confirmed by transfection studies. A decrease in IC50 was detected from combination therapy compared with single siMDR-1 therapy using cytotoxic assay. In vivo knockdown studies showed the targeted nanoparticles provided down-regulation MDR-1 (65%) and PKM-2 (65-70%) in SKOV-3 tumor bearing mice. Combination therapy showed improved tumor growth inhibition (TGI) and tumor volume doubling (TVD) time for all treatment groups compared to PTX alone.

Conclusions: This study showed the encapsulation and delivery of siMDR-1 and siPKM-2 in HA-PEI based self-assembling nanoparticles improved the efficacy and cytotoxic effect of PTX in cancer cells. Plus, these agents can provide synergistic activity for cancer therapy.

REFERENCES

ACKNOWLEDGEMENTS