Signaling Through a Mu-Opioid – Cannabinoid CB1 Receptor Heteromer, a Novel Analgesic Target

Guoqing Xiang, Takeharu Kawano, Apostolia Baki and Diomedes E. Logothetis

Opportunity

Gi signaling through homomeric mu-opioid and cannabinoid CB1 receptors

![Graph](image1)

Fig 1. Opioid – cannabinoid interaction. A. The antinociceptive effects of morphine are enhanced by d9THC. d9THC at an inactive dose of 20mg/kg was administered p.o. 15 min before morphine p.o. (Cichewicz D et al. The Journal of Pharmacology and Experimental Therapeutics 1999: 289, 859-867) B. The light intensities were expressed as a BRET ratio. ***P<0.001 (Rios C et al. British Journal of Pharmacology 2006: 148, 387-395)

Approach

Calcium mobilization assay

![Graph](image2)

Fig 2. Calcium mobilization assay. A. Human Embryonic Kidney 293 (HEK293) cells. B. GCaMP was utilized as an indicator of intracellular calcium level. (Chen TW et al. Nature 2013; 499: 295-300) C. Fluorescence was read by FlexStation which is equipped with robotic liquid handler that allows high throughput assays.

Results

Gi signaling through heteromeric mu-opioid and cannabinoid CB1 receptors

![Graph](image3)

Fig 3. HEK 293 cells were transiently transfected with 50ng GPCRs and 50ng G proteins with lipofectamine2000. Intracellular calcium levels were detected by a FlexStation, 48 hours after transfection.

Impact

- Our work characterization of the MOR-CB1 receptor heteromer complex helps the development of novel therapeutics for pain treatment.

The unique feature about my innovation/research is: Targeting at a heteromeric MOR-CB1 receptor complex

This addresses the problem of: Opioid crisis and side effects of current analgesics

References

Acknowledgements

We are grateful to Dr. Alexandros Makriyannis and Dr. Spyridon Nikas for providing cannabinoid ligands. We thank Dana Selley Ph.D. for providing the rCB1 receptor cDNA vector. We also thank the invaluable support of all the members in Logothetis lab.