Using Real-Time Ultrasound Imaging to Enhance Learning and Clinical Application of Joint Traction in Physical Therapy Education

Todd Burnett PT/s; Michael Ling PT/s; Melissa Ho PT/s Mentors: Alycia Markowski, PT, DPT; Maureen Watkins PT, DPT

Introduction

- Physical therapy students struggle with confidence and execution when learning manual techniques.
- Current teaching methods lack objective feedback.
- Real-time ultrasound imaging (RTUI) provides objective knowledge of performance and results.
- We proposed that the use of RTUI when learning manual techniques would result in enhanced skill acquisition and increased student confidence when compared to traditional teaching methods.

Methods

- 84 third professional year physical therapy students self-selected into control and intervention groups.
- All students received baseline written and video instruction.
- The control group received traditional lab based instruction that includes instructor demonstration and observational feedback.
- The intervention group received RTUI in addition to traditional instruction.
- Pre and post data collection included confidence surveys and measured students ability to separate two joint surfaces. Post intervention qualitative feedback was collected.

Results

- Overall, there was significant improvement in students confidence in performing knee traction. p<.0001
- There was no statistical difference between control and intervention group. p=.14
- No significant difference in joint space changes was found between control and intervention groups joint space but a positive trend was noted. p=.78
- Analysis of qualitative data identified 3 themes. 100% of the Students exposed to RTUI reported RTUI was helpful for objective and visual feedback. 24% believed it helped them learn and 26% stated more time with the USI would have been beneficial.

Clinical Relevance

- The use of RTUI provides students with objective feedback and instant knowledge of results.
- Students are able to see that their technique is effectively separating a joint space.
- RTUI may enhance the associative stage of motor learning.
- The image provides feedback to the student on the proper amount of force to apply when performing the technique.

Discussion

- Overall we saw improvements in learning with trends toward students showing more confidence in their skills when exposed to RTUI.
- Our study may have been limited by inadequate exposure to viewing and understanding ultrasound images an limited amount of practice time with the RTUI unit.
- More research is currently needed to determine if increased exposure to RTUI throughout the DPT curriculum would be beneficial for student learning.

This study was supported by Provost Grants for Advancing Undergraduate Teaching and Learning at Northeastern